Resource Recycling
  • The Latest
  • Analysis
    • All
    • Certification Scorecard
    • Industry Announcements
    • Opinion
    The electronics recycling industry is undergoing a transformation from labor-intensive manual operations to highly automated, AI-driven facilities that use advanced robotics, cleaner chemistry and digital tracking systems to extract critical materials.

    The cyber-physical MRF: AI and robotics reshape e-waste recovery

    Certification scorecard for the week of Feb. 9, 2026

    Meta-Corning deal signals IT hardware retirement wave

    Meta-Corning deal signals IT hardware retirement wave

    Malaysia clamps down on illegal e-waste imports amid probes

    Malaysia clamps down on illegal e-waste imports amid probes

    URT builds alliance to remake electronics plastics at scale

    ICYMI: Top 5 e-scrap stories from January 2026

    The electronics recycling industry is undergoing a transformation from labor-intensive manual operations to highly automated, AI-driven facilities that use advanced robotics, cleaner chemistry and digital tracking systems to extract critical materials.

    Certification scorecard for the week of Feb. 2, 2026

    Auditors warn EU may fall short on critical metals

    Auditors warn EU may fall short on critical metals

    Industry announcements for January 2026

    Industry announcements for February 2026

    ICYMI: Top 5 recycling stories from January 2026

  • Conferences
  • Publications

    Other Topics

    Textiles
    Organics
    Packaging
    Glass
    Brand Owners

    Metals
    Technology
    Research
    Markets
    Grant Watch

    All Topics

Subscribe
No Result
View All Result
Resource Recycling
  • The Latest
  • Analysis
    • All
    • Certification Scorecard
    • Industry Announcements
    • Opinion
    The electronics recycling industry is undergoing a transformation from labor-intensive manual operations to highly automated, AI-driven facilities that use advanced robotics, cleaner chemistry and digital tracking systems to extract critical materials.

    The cyber-physical MRF: AI and robotics reshape e-waste recovery

    Certification scorecard for the week of Feb. 9, 2026

    Meta-Corning deal signals IT hardware retirement wave

    Meta-Corning deal signals IT hardware retirement wave

    Malaysia clamps down on illegal e-waste imports amid probes

    Malaysia clamps down on illegal e-waste imports amid probes

    URT builds alliance to remake electronics plastics at scale

    ICYMI: Top 5 e-scrap stories from January 2026

    The electronics recycling industry is undergoing a transformation from labor-intensive manual operations to highly automated, AI-driven facilities that use advanced robotics, cleaner chemistry and digital tracking systems to extract critical materials.

    Certification scorecard for the week of Feb. 2, 2026

    Auditors warn EU may fall short on critical metals

    Auditors warn EU may fall short on critical metals

    Industry announcements for January 2026

    Industry announcements for February 2026

    ICYMI: Top 5 recycling stories from January 2026

  • Conferences
  • Publications

    Other Topics

    Textiles
    Organics
    Packaging
    Glass
    Brand Owners

    Metals
    Technology
    Research
    Markets
    Grant Watch

    All Topics

Subscribe
No Result
View All Result
Resource Recycling
No Result
View All Result
Home Resource Recycling Magazine

First-person perspective: Market-driven solutions to precious-metals supply

byBodo Albrecht
September 26, 2024
in Resource Recycling Magazine

This article appeared in the September 2024 issue of Resource Recycling. Subscribe today for access to all print content.

Global growth in uptake of electric vehicles, semiconductors, fuel cells, battery panels, medical devices and other products and components is fueling heightened demand for precious metals. Manufacturers of a diverse range of products favor these metals for their superior electrical conductivity, corrosion resistance, hardness and a range of other valuable qualities.

At the same time, precious metals are a limited natural resource. It is not uncommon for mines in South Africa, for example, to plunge 2 or 3 kilometers into the ground to reach their deposits. Many major mining operations around the world are advanced in their life cycles. While exploration for new sources is ongoing, the price of such efforts is very high.

Of course, the approaching shortage of precious metals is problematic not only from the perspective of simple industrial supply and demand; there also is the devastating impact on our environment and human well-being to be taken into account. According to a February 2022 research briefing to the U.K. Parliament, “Mining and mineral processing consume large volumes of water, including in arid regions. The discharge of water from mine sites can result in serious contamination of waterways. The industry uses over 8% of the world’s total energy each year to produce metals, and contributes to 10% of the annual greenhouse gas (GHG) emissions. Improper storage of mine waste has resulted in humanitarian and ecological disasters.”

The mining of precious metals in particular involves long-established and well-understood methods and high safety standards, making it a much smaller contributor to environmental issues than some base metal or rare-earth mining operations. However, according to a study published by the International Platinum Association in 2023, the carbon footprint of recycled precious metals is still more than 90% less than primary mining.

Recovering Vs. Mining Precious Metals

There are so many recoverable precious metals — gold, iridium, osmium, palladium, platinum, rhodium, ruthenium and silver — that are being wasted today.

The World Health Organization has referred to e-scrap — computers, household appliances, medical devices, mobile phones, etc. — as “the fastest growing solid waste stream in the world,” of which only 17.4% was documented as formally collected and recycled. E-scrap typically contains precious metals such as gold and silver as well as platinum group metals, depending on the kind of material.

By contrast, the majority of waste and spent catalysts from industrial production worldwide is a ready source of recoverable metals that is already being recycled.

Even slightly improving the ratio of the precious metals that are recovered in various ways relative to those that are mined would offer tremendous, varied and widely shared benefits. To date, the relative complexities associated with recovering precious metals have made the process only a limited player in industry’s plans for attaining the resources that it needs. Market-driven trends, however, are changing the equation.

Changing Business Models

Primary among those trends is that the math of recovering versus mining precious metals is evolving.

As we see the various in-demand precious metals grow more scarce, we also are seeing those metals grow more expensive. Ironically, the trend toward scarcity will improve the business models for processes such as refurbishing and repurposing of components that utilize precious metals, and for more efficiently and effectively recycling recoverable metals from production scrap.

Many smartphones, for example, currently end up in landfills and/or incineration plants around the world; however, as the metals that mobile phones require grow more expensive to mine and procure, it will fuel a greater economic incentive to spur reuse of the devices. The potential impact on sustainability of a large-scale and global shift from discarding to reusing phones would be profound.

Furthermore, mining is inefficient and expensive relative to recycling. There are variables to be factored around the vein of the ore, but, in most cases, 1 ton of mined gold ore can be expected to yield about 5 grams of gold, while 1 ton of cell phones, about 10,000 units, could offer up to 280 grams of gold.

Changing Customer Demands

In many cases, manufacturers of products that rely on precious metals have new demands that are forcing change in the ways that they are sourced. Buyers in multiple industries are becoming more demanding of “conflict-free” resources via mineral sourcing programs that take into account human rights, environmental impact and ethics — as well as supplies that are sourced by less environmentally damaging means.

Plus, supply-chain disruptions in recent years have crystallized manufacturers’ attention on sourcing precious metals and other supplies geographically from nearer to where they will be processed. In this way, operations are rendered less vulnerable to geopolitical issues, and manufacturers potentially gain greater control over and visibility into their supply.

Consequently, recycling is moving closer to recovering and refining bases, enabling, for example, precious metals to be reclaimed from metal fragments and other waste generated during a manufacturing process. Integrating recovery and refining of precious metals with the manufacture of industrial precious metals products in this way can greatly contribute to sustainability and help ensure a steady supply of pure resources.

Indeed, decentralization in the recycling industry is key to reducing global reliance on mining. Increasingly, the precious metals industry is moving away from the traditional, CapEx-intensive solutions such as electric and plasma arc furnaces, which depend on very high utilization to turn a profit, and toward more environmentally friendly technologies. Relying on, for example, hydrometallurgical solutions that utilize chemical or microbial techniques facilitates the deployment of recycling operations next to where scrap is being generated and where the recovered precious metals are going to be used.

Ultimately, it’s likely to be these sorts of market-driven reforms that will drive real, lasting solutions to the world’s precious metals supply issues.

If properly recycled, there are significant amounts of valuable and finite resources to be reaped from e-scrap. Precious metal raw materials that are 100% recycled today are challenging to achieve without substantially more recovery, so it is crucial to grow understanding of precious metal recovery across manufacturers and general consumers alike.

Bodo Albrecht is president of Tanaka Precious Metals (Americas), responsible for all operations in North, Central, and South America, including sales, distribution and support for all Tanaka products in close cooperation with manufacturing, marketing, technical, research and development and related operations in Asia. He is a precious metals executive with deep roots in the industry, as well as in rare earth elements and strategic metals, with 20 years of international management positions with Degussa AG and 15 years running a consulting firm, BASIQ Corporation, before joining Tanaka.

The views and opinions expressed are those of the authors and do not imply endorsement by Resource Recycling, Inc. If you have a subject you wish to cover in an op-ed, please send a short proposal to [email protected] for consideration.

TweetShare
Bodo Albrecht

Bodo Albrecht

Related Posts

Iron Mountain sees ITAD surge, raises forecast on record Q2

Iron Mountain posts record Q4, guides strong 2026 growth

byScott Snowden
February 13, 2026

Iron Mountain reports record Q4 and 2025 results as data centers and ALM surged, and forecasts double-digit 2026 growth while...

Origin Materials to reduce staff in reorg

byAntoinette Smith
February 13, 2026

The materials technology company will lay off 32% of its staff and shift more resources toward commercializing PET closures, a...

Focus on recycling film, flexibles takes shape in two reports

byAntoinette Smith
February 13, 2026

The US Plastics Pact and the Alliance to End Plastic Waste released reports outlining necessary steps to improving recycling outcomes...

Bipartisan reps introduce bill on recycling claims

Bipartisan reps introduce bill on recycling claims

byAntoinette Smith
February 12, 2026

Legislators introduced the Recycled Materials Attribution Act in the US House, drawing support from a new industry group and scrutiny...

The electronics recycling industry is undergoing a transformation from labor-intensive manual operations to highly automated, AI-driven facilities that use advanced robotics, cleaner chemistry and digital tracking systems to extract critical materials.

The cyber-physical MRF: AI and robotics reshape e-waste recovery

byDavid Daoud
February 12, 2026

The electronics recycling industry is entering a new phase of technological acceleration. Advances in artificial intelligence, robotics, advanced chemistry, and...

APR, industry create proactive guidance for PET caps

byAntoinette Smith
February 12, 2026

The Association of Plastic Recyclers recognized that developing guidelines before PET caps were completely developed and commercialized was crucial, and...

Load More
Next Post

News from Apple, Elemental Holding and more

More Posts

Oregon’s Recycling Modernization Act faces injunction

Court partially blocks Oregon EPR law, dismisses bulk of lawsuit

February 10, 2026
Chinese processing group details goals for US visit

AMP lays out vision of next-generation, AI-driven MRFs

July 24, 2024
Malaysia clamps down on illegal e-waste imports amid probes

Malaysia clamps down on illegal e-waste imports amid probes

February 6, 2026

REUSE Act heads to US House for consideration

February 9, 2026
Meta-Corning deal signals IT hardware retirement wave

Meta-Corning deal signals IT hardware retirement wave

February 9, 2026

ecoATM recycled 7.5M phones in 2025 as payouts hit $1.5B

February 10, 2026
Texas sues over dumped wind turbine blades

Texas sues over dumped wind turbine blades

February 10, 2026

APR, industry create proactive guidance for PET caps

February 12, 2026

Alpek talks PET overcapacity, soft demand

February 11, 2026
The electronics recycling industry is undergoing a transformation from labor-intensive manual operations to highly automated, AI-driven facilities that use advanced robotics, cleaner chemistry and digital tracking systems to extract critical materials.

The cyber-physical MRF: AI and robotics reshape e-waste recovery

February 12, 2026
Load More

About & Publications

About Us

Staff

Archive

Magazine

Work With Us

Advertise
Jobs
Contact
Terms and Privacy

Newsletter

Get the latest recycling news and analysis delivered to your inbox every week. Stay ahead on industry trends, policy updates, and insights from programs, processors, and innovators.

Subscribe

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

No Result
View All Result
  • The Latest
  • Analysis
  • Recycling
  • E-Scrap
  • Plastics
  • Policy Now
  • Conferences
    • E-Scrap Conference
    • Plastics Recycling Conference
    • Resource Recycling Conference
    • Textiles Recovery Summit
  • Magazine
  • About Us
  • Advertise
  • Archive
  • Jobs
  • Staff
Subscribe
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.